AMPK activation-dependent autophagy compromises oleanolic acid-induced cytotoxicity in human bladder cancer cells
نویسندگان
چکیده
Autophagy is an evolutionarily conserved catabolic process in eukaryotic cells, which allows cells to overcome a wide array of of stresses and has recently been shown to result in drug resistance. This study examined the effect of autophagy on oleanolic acid (OA)-induced cytotoxicity against bladder cancer cells. Our study demonstrated that OA inhibited cell viability, proliferation, and induced apoptosis in bladder cancer lines T24 and EJ. Furthermore, OA induced autophagy in both cell lines by activating AMP-activated protein kinase (AMPK), inhibiting mechanistic target of rapamycin (mTOR) and promoting unc-51 like autophagy activating kinase 1 (ULK1). Moreover, inhibiting autophagy by siRNA to autophagy related 7 (ATG7) or with autophagy inhibitor bafilomycin A1 and 3-methyladenine (3-MA) or AMPK inhibitor dorsomorphin (compound C) promoted OA-induced deaths of bladder cancer cells. In contrast, either autophagy activator rapamycin or AMPK activator acadesine (AICAR) compromised OA-induced anti-cancer effect. Our findings suggested that OA induced protective autophagy through AMPK-mTOR-ULK1 signaling pathway in bladder cancer cells and OA in combination with autophagy inhibitor might be a novel alternative for the treatment of bladder cancer.
منابع مشابه
Salinomycin Activates AMP-Activated Protein Kinase-Dependent Autophagy in Cultured Osteoblastoma Cells: A Negative Regulator against Cell Apoptosis
BACKGROUND The malignant osteoblastoma has poor prognosis, thus the search for novel and more efficient chemo-agents against this disease is urgent. Salinomycin induces broad anti-cancer effects both in vivo and in vitro, however, its role in osteoblastoma is still not clear. KEY FINDINGS Salinomycin induced both apoptosis and autophagy in cultured U2OS and MG-63 osteoblastoma cells. Inhibiti...
متن کاملMutL homolog 1 contributes to temozolomide-induced autophagy via ataxia-telangiectasia mutated in glioma.
In the present study, mutL homolog 1 (MLH1) small interfering (si)RNA, KU‑55933, an ataxia‑telangiectasia mutated (ATM) inhibitor, and compound C, an adenosine monophosphate‑activated protein kinase (AMPK) inhibitor, were used to investigate the mechanisms underlying temozolomide (TMZ)‑induced autophagy and to determine the role of MLH1 and ATM in autophagy. MLH1 siRNA and KU‑55933 inhibited th...
متن کاملAMPK-autophagy inhibition sensitizes icaritin-induced anti-colorectal cancer cell activity
The current research studied the potential effect of autophagy on icaritin-induced anti-colorectal cancer (CRC) cell activity. Treatment of icaritin in both primary and established (HT-29) CRC cells induced feedback activation of autophagy, evidenced by p62 degradation, Beclin-1 and autophagy-related gene-5 (ATG-5) upregulation, as well as light chain 3B (LC3B)-GFP puncta formation. Pharmacolog...
متن کاملSesterin as a biomolecule
Sestrins (Sesns), highly conserved stress-inducing metabolic proteins, are known to protect organisms against various harmful stimuli including DNA damage, oxidative stress, endoplasmic reticulum (ER) stress, and hypoxia. Sestrins regulate metabolism mainly through activation of AMP-dependent protein kinase (AMPK) and inhibition of rapamycin complex 1 (mTORC1). Sestrins also play a pivotal role...
متن کاملAnthocyanins in the black soybean (Glycine max L.) protect U2OS cells from apoptosis by inducing autophagy via the activation of adenosyl monophosphate-dependent protein kinase.
Anthocyanins (ATCs) have been reported to induce apoptosis in various types of cancer cells, stimulating the development of ATCs as a cancer chemotherapeutic or chemopreventive agent. It was recently reported that ATCs can induce autophagy, however, the mechanism for this remains unclear. In the present report, we carried out mechanistic studies o...
متن کامل